Complex II of the mitochondrial respiratory chain is the key mediator of divalent manganese-induced hydrogen peroxide production in microglia.
نویسندگان
چکیده
Exposure to excessive levels of manganese (Mn) is associated with the development of movement disorders, with symptoms overlapping with Parkinson's disease. Oxidative damage has been implicated as a key contributor to Mn-induced neurotoxicity. We have recently reported that divalent Mn (Mn(2+)) stimulates brain microglia to produce and release hydrogen peroxide (H2O2), and microglial-free radical generation facilitates Mn(2+)-induced dopaminergic neurotoxicity. The goal of this study was to elucidate the underlying mechanism of the Mn(2+)-induced H2O2 production in microglia. Exposure to low micromolar concentrations of Mn(2+), but not divalent copper, cadmium, nickel, cobalt, zinc, and iron, induced a significant production of H2O2 from rat microglial but not astroglial cells. Subcellular fractionation studies revealed that Mn(2+) was capable of inducing significant H2O2 production in the mitochondrial but not the cytosolic or nuclear fraction prepared from microglia. Analysis of the relative contribution of mitochondrial respiratory chain complexes indicated that Mn(2+)-induced mitochondrial H2O2 production required the presence of complex II substrate succinate. In contrast, complex I substrates malate and glutamate failed to support H2O2 production in the presence of Mn(2+). Furthermore, the succinate-supported Mn(2+)-induced mitochondrial H2O2 production was abolished by pharmacological inhibition of complex II but not that of complexes I and III, suggesting that mitochondrial complex II is a key mediator in Mn(2+)-induced H2O2 production. These findings advance our knowledge on the mechanisms by which Mn induces oxidative stress and the potential contribution to Mn neurotoxicity.
منابع مشابه
Glycerophosphate-dependent hydrogen peroxide production by rat liver mitochondria.
We studied the extent to which hormonally-induced mitochondrial glycerophosphate dehydrogenase (mGPDH) activity contributes to the supply of reducing equivalents to the mitochondrial respiratory chain in the rat liver. The activity of glycerophosphate oxidase was compared with those of NADH oxidase and/or succinate oxidase. It was found that triiodothyronine-activated mGPDH represents almost th...
متن کاملLong-term, high-dose aspirin therapy increases the specific activity of complex III of mitochondrial respiratory chain in the kidney of diabetic rats
Introduction: One of the main mechanisms by which diabetic complications occur is an alteration of the structure and function of proteins due to hyperglycemia. Aspirin (ASA) affects cellular pathways through different mechanisms, including glycation inhibition and antioxidant activity. The aim of the present study, as a follow up to our previous one, is to investigate the effect of long-term, h...
متن کاملEffects of Some Lamiaceae Species on NO Production and Cell Injury in Hydrogen Peroxide-induced Stress
Nitric oxide (NO) is a key mediator that plays an important role in pathogenesis of various chronic diseases like Alzheimer’s disease and Parkinson’s disease. Additionally, there is a great attitude for finding natural compounds, which could control and inhibit NO production in pathological conditions. Therefore, we were encouraged to investigate the effects of some Lamiaceae species on NO prod...
متن کاملEffects of Some Lamiaceae Species on NO Production and Cell Injury in Hydrogen Peroxide-induced Stress
Nitric oxide (NO) is a key mediator that plays an important role in pathogenesis of various chronic diseases like Alzheimer’s disease and Parkinson’s disease. Additionally, there is a great attitude for finding natural compounds, which could control and inhibit NO production in pathological conditions. Therefore, we were encouraged to investigate the effects of some Lamiaceae species on NO prod...
متن کاملCatalytic Decomposition of Hydrogen Peroxide in the Presence of Synthesized Iron-Manganese oxide Nanocomposites via Different Methods
The special application of iron-manganese oxide nanocatalysts has been investigated in decomposition of hydrogen peroxide. In this research, iron-manganese oxide nanocomposites were synthesized by co-precipitation, sol-gel and mechanochemical methods using iron (III) nitrate, iron (II) sulfate and manganese (II) nitrate as starting materials. These nanocomposites were prepared on the variou...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Toxicological sciences : an official journal of the Society of Toxicology
دوره 132 2 شماره
صفحات -
تاریخ انتشار 2013